## Friday, December 23, 2011

### Legendre polynomials of the first kind, plots of degrees n = 0, 1, 2, 3, 4, 5

$$P_0 \left( x \right) = 1$$

$$P_1 \left( x \right) = x$$

$$P_2 \left( x \right) = \dfrac{1}{2} \left( 3 x^2 - 1 \right)$$

$$P_3 \left( x \right) = \dfrac{1}{2} x \left( 5 x^2 - 3 \right)$$

$$P_4 \left( x \right) = \dfrac{1}{8} \left( 35 x^4 - 30 x^2 + 3 \right)$$

$$P_5 \left( x \right) = \dfrac{1}{8} x \left( 63 x^4 - 70 x^2 + 15 \right)$$

$$P_0 \left( x \right), P_1 \left( x \right), P_2 \left( x \right), P_3 \left( x \right), P_4 \left( x \right), P_5 \left( x \right)$$

Code for last graph in wxMaxima:

plot2d([legendre_p(0, x), legendre_p(1, x), legendre_p(2, x),legendre_p(3, x),
legendre_p(4, x), legendre_p(5, x)], [x, -2, 2], [y, -2, 2],
[legend,"P_0 (x) = 1","P_1 (x) = x","P_2 (x) = (1/2)*(3*x^2 - 1)",
"P_3 (x) = (1/2)*x*(5*x^2 - 3)","P_4 (x) = (1/8)*(35*x^4 - 30*x^2 + 3)",
"P_5 (x) = (1/8)*x*(63*x^4 - 70*x^2 + 15)" ], [ylabel,"P_n (x)"], [gnuplot_preamble,"set key bottom"]);