\begin{align} \mathbf{I.} &= \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} \\
\mathbf{II.} &= \left( \mathbf{u} + \mathbf{v} \right) + \mathbf{w} = \mathbf{u} + \left( \mathbf{v} + \mathbf{w} \right) \\
\mathbf{III.} &= h \left( \mathbf{u} + \mathbf{v} \right) = h \mathbf{u} + h \mathbf{v} \\
\mathbf{IV.}&= \left( a + b \right) \mathbf{u} = a \mathbf{u} + b \mathbf{u} \\
\mathbf{V.} &= \left( a b \right) \mathbf{u} = a \left( b \mathbf{u} \right) \\
\mathbf{VI.} &= 1 \mathbf{u} = \mathbf{u} \\
\mathbf{VII.} &= 0 \mathbf{u} = \mathbf{0} \\
\mathbf{VIII.} &= \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u} \\
\mathbf{IX.} &= \left( \mathbf{u} + \mathbf{v} \right) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w} \\
\mathbf{X.} &= \left( a \mathbf{u} \right) \cdot \mathbf{v} = a \left( \mathbf{u} \cdot \mathbf{v} \right) \\
\mathbf{XI.} &= \mathbf{u} \cdot \mathbf{u} \ge 0 \\
\mathbf{XII.} &= \mathbf{u} \cdot \mathbf{u} = 0 \; \; \text{if and only if} \; \; \mathbf{u} = 0 \end{align}
The first property in the above list is known as the commutative property or law which is true for vector addition [2]:
\[ \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A} \]
or with scalars [3]
\[ m \mathbf{u} = \mathbf{u}m \]
Note: I think there might be an error in Tai [4]. He states that the associative law is
\[ \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A} \]
or
\[ \mathbf{A} - \mathbf{B} = -\mathbf{B} + \mathbf{A} \]
when I think he meant commutative.
The second property in the above list is known as the associative property or law which is also true for vector addition [2, 3]:
\[ \left( \mathbf{u} + \mathbf{v} \right) + \mathbf{w} = \mathbf{u} + \left( \mathbf{v} + \mathbf{w} \right) \]
or with scalars [3]
\[ m \left( n \mathbf{u} \right) = \left (mn \right) \mathbf{u}m \]
\[ \left( m + n \right) \mathbf{u} = m \mathbf{u} + n \mathbf{u} \]
or
\[ m \left( \mathbf{u} + \mathbf{v} \right) = m \mathbf{u} + m \mathbf{v} \]
References:
[1] W. Kaplan. Advanced Calculus, 5th ed. Addison-Wesley. 2002
[2] A. I. Borisenko and I. E. Tarapov. Vector and Tensor Analysis with Applications, (translated by R. A. Silverman). Dover Publications Inc., Mineola, NY. 1979 (originally published in 1968 by Prentice-Hall, Inc.
[3] T. C. Papanastasiou, G. C. Georgiou, & A. N. Alexandrou. Viscous Fluid Flow. CRC Press. Boca Raton, FL. 2000
[4] C.-T. Tai. General Vector and Dyadic Analysis: Applied Mathematics in Field Theory, 2nd ed. Wiley-IEEE Press, New York, NY. 1997.
[2] A. I. Borisenko and I. E. Tarapov. Vector and Tensor Analysis with Applications, (translated by R. A. Silverman). Dover Publications Inc., Mineola, NY. 1979 (originally published in 1968 by Prentice-Hall, Inc.
[3] T. C. Papanastasiou, G. C. Georgiou, & A. N. Alexandrou. Viscous Fluid Flow. CRC Press. Boca Raton, FL. 2000
[4] C.-T. Tai. General Vector and Dyadic Analysis: Applied Mathematics in Field Theory, 2nd ed. Wiley-IEEE Press, New York, NY. 1997.
No comments:
Post a Comment