alpha = 30*pi/180 show(alpha) show(float(alpha)) f = (arcsin(alpha))^2 + log(tan(alpha/2)) - arcsin(alpha)*arctan(alpha) show(f) show(float(f)) g = (1/(0.7*sin(x)))*sqrt(1 + ((pi)^(-2))*((0.7*sin(x))^2)*(f - csc(x)*tan(x/2) - log(tan(x/2)))) p = plot(g, (0, alpha)) show(p, ymin = 0, ymax = 20)

In Sage, the variable x is automatically known/defined. I then create a simple function similar to how I created alpha and f. I next equal p to the plot since I wanted to change the y axis range manually which you can do through the show command (or this can also be done in the plot command as well).

Here is another example of a 2D plot. This one shows how to plot a couple of functions.

alpha = 30*pi/180 show(alpha) show(float(alpha)) z = 0.5 r_max = z*tan(alpha) show(r_max) show(float(r_max)) lamb_da = (csc(alpha))^2 - (cot(alpha))*(csc(alpha)) + log(tan(alpha/2)) show(float(lamb_da)) cig_ma_c = 1 r = var('r') psee = (1/2*pi)*(cig_ma_c)*(r^2)*(lamb_da + (z/r)*sqrt(1 + (z/r)^2) - log(sqrt(1 + (z/r)^2) - z/r) - 1 - (z/r)^2) lamb_da_bi = (csc(alpha))^2 - (cot(alpha))*(csc(alpha)) + log(tan(alpha)/2) show(float(lamb_da_bi)) psee_bi = (1/2*pi)*(cig_ma_c)*(r^2)*(lamb_da_bi + (z/r)*sqrt(1 + (z/r)^2) - log(r/(2*z)) - 1 - (z/r)^2) p1 = plot(psee, (r, 0, r_max)) p2 = plot(psee_bi, (r, 0, r_max), color ='green') show(p1 + p2)

## No comments:

## Post a Comment