\[ \begin{align} \mathbf{A} \cdot \mathbf{B} &= \left(A_1 \mathbf{e}_1 + A_2 \mathbf{e}_2 + A_3 \mathbf{e}_3 \right) \cdot \left(B_1 \mathbf{e}_1 + B_2 \mathbf{e}_2 + B_3 \mathbf{e}_3 \right) \\ &= A_1 B_1 + A_2 B_2 + A_3 B_3 \end{align} \]
That is, the dot product multiplies each corresponding component of the vectors and adds them together to obtain a scalar. So you could also call this a vector component product.
In progress...to be continued.
References:
[1] K. Karamcheti. Principles of Ideal-Fluid Aerodynamics. John Wiley & Sons, Inc., New York, NY. 1966
[2] W. Kaplan. Advanced Calculus (5th ed.). Addison-Wesley. 2002
[2] W. Kaplan. Advanced Calculus (5th ed.). Addison-Wesley. 2002
No comments:
Post a Comment