Thursday, September 8, 2011

Some references for vector calculus and analysis

Here are some good resources to look at for vector calculus and analysis including linear algebra and matrices.

[1] K. Karamcheti. Principles of Ideal-Fluid Aerodynamics. John Wiley & Sons, Inc., New York, NY. 1966

[2] W. Kaplan. Advanced Calculus (5th ed.). Addison-Wesley. 2002

[3] G. B. Arfken & H.-J. Weber, Mathematical Methods for Physicists (6th ed.). Elsevier Academic Press. Burlington, MA. 2005

[4] R. Aris. Vectors, Tensors and the Basic Equations of Fluid Mechanics. Dover Publications. New York, NY. 1990

[5] A. I. Borisenko and I. E. Tarapov. Vector and Tensor Analysis with Applications, (translated by R. A. Silverman). Dover Publications Inc., Mineola, NY. 1979 (originally published in 1968 by Prentice-Hall, Inc.

[6] H. M. Schey. Div, Grad, Curl, and All That: An Informal Text on Vector Calculus, 3rd ed. W. W. Norton \& Company, New York, NY. 1997

[7] H. M. Schey. Div, Grad, Curl, and All That: An Informal Text on Vector Calculus, 4th ed. W. W. Norton \& Company, New York, NY. 2005

[8] K. R. Reddy, S. Raghavan, and D.V.N. Sarma. Elements of Mechanics, Universities Press (India) Limited, Hyderabad, India. 1994.

[9] C.-T. Tai. General Vector and Dyadic Analysis: Applied Mathematics in Field Theory, 2nd ed. Wiley-IEEE Press, New York, NY. 1997.

[10] J. Betten. Creep Mechanics, 2nd ed. Springer, Berlin, Germany. 2005.

[11] J. Betten. Creep Mechanics, 3rd ed. Springer, Berlin, Germany. 2008.

[12] J. C. Slattery. Advanced Transport Phenomena, Cambridge University Press, Cambridge, UK. 1999.

[13] F. Irgens. Continuum Mechanics Springer, Berlin, Germany. 2008.

[14] P. J. Pahl and R. Damrath. Mathematical Foundations of Computational Engineering: A Handbook Springer, Berlin, Germany. 2001.

[15] M. T. Schobeiri. Fluid Mechanics for Engineers - A Graduate Textbook. Springer.
Berlin, Germany. 2010

In be continued.

No comments:

Post a Comment